Bethe Ansatz calculation of the spectral gap of the asymmetric exclusion process
نویسندگان
چکیده
We present a new derivation of the spectral gap of the totally asymmetric exclusion process on a half-filled ring of size L by using the Bethe Ansatz. We show that, in the large L limit, the Bethe equations reduce to a simple transcendental equation involving the polylogarithm, a classical special function. By solving that equation, the gap and the dynamical exponent are readily obtained. Our method can be extended to a system with an arbitrary density of particles.
منابع مشابه
The Asymmetric Simple Exclusion Process : An Integrable Model for Non-Equilibrium Statistical Mechanics
The Asymmetric Simple Exclusion Process (ASEP) plays the role of a paradigm in NonEquilibrium Statistical Mechanics. We review exact results for the ASEP obtained by Bethe Ansatz and put emphasis on the algebraic properties of this model. The Bethe equations for the eigenvalues of the Markov Matrix of the ASEP are derived from the algebraic Bethe Ansatz. Using these equations we explain how to ...
متن کاملSpectral gap of the totally asymmetric exclusion process at arbitrary filling
We calculate the spectral gap of the Markov matrix of the totally asymmetric simple exclusion process (TASEP) on a ring of L sites with N particles. Our derivation is simple and self-contained and extends a previous calculation that was valid only for half-filling. We use a special property of the Bethe equations for TASEP to reformulate them as a one-body problem. Our method is closely related...
متن کاملHidden symmetries in the asymmetric exclusion process
We present a spectral study of the evolution matrix of the totally asymmetric exclusion process on a ring at half filling. The natural symmetries (translation, charge conjugation combined with reflection) predict only two fold degeneracies. However , we have found that degeneracies of higher order also exist and, as the system size increases, higher and higher orders appear. These degeneracies ...
متن کاملDerivation of a Matrix Product Representation for the Asymmetric Exclusion Process from Algebraic Bethe Ansatz
We derive, using the algebraic Bethe Ansatz, a generalized Matrix Product Ansatz for the asymmetric exclusion process (ASEP) on a one-dimensional periodic lattice. In this Matrix Product Ansatz, the components of the eigenvectors of the ASEP Markov matrix can be expressed as traces of products of non-commuting operators. We derive the relations between the operators involved and show that they ...
متن کاملTotally Asymmetric Exclusion Process
The algebraic structure underlying the totally asymmetric exclusion process is studied by using the Bethe Ansatz. From the properties of the algebra generated by the local jump operators, we construct explicitly the hierarchy of operators that commute with the Markov operator. The transfer matrix, which is the generating function of these operators, is shown to represent a discrete Markov proce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003